
A Power-Performance Analysis of Memory-intensive
Parallel Applications on a Manycore Platform

Vishal Gupta ∗ Hyesoon Kim Karsten Schwan
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA 30332

{vishal,hyesoon,schwan}@cc.gatech.edu

Abstract
Multicore processors have been effective in scaling appli-
cation performance by dividing computation among multi-
ple threads running in parallel. However, application per-
formance does not necessarily improve as more cores are
added. Application performance can be limited due to mul-
tiple bottlenecks including contention for shared resources
such as caches and memory.

In this paper, we perform a scalability analysis of paral-
lel applications on a 64-threaded Intel Nehalem-EX based
system. We find that applications which scale well on small
number of cores, exhibit poor scalability on large number of
cores. Using hardware performance counters, we show that
many performance limited applications are limited by mem-
ory bandwidth on manycore platforms and exhibit improved
scalability when provisioned with higher memory band-
width by varying the number of memory riser cards used.
Results show significant energy savings for these memory
bandwidth limited applications by regulating the number of
threads used and applying dynamic voltage and frequency
scaling.

Keywords Manycore, Scalability, Memory bandwidth

1. Introduction
The number of cores in modern processors are rapidly in-
creasing, and this trend is going to continue [1]. However,
application performance does not necessarily improve with
increasing core count. For example, Figure 1 shows the ex-
ecution time for SP (scalar pentadiagonal) benchmark from
NAS parallel benchmark (NPB) suite [4] for different num-
ber of threads. As we see from the figure that execution time
of SP first decreases and then starts to increase with more
number of threads.

The performance of multi-threaded applications on many-
core processors can be limited due to multiple factors. These
bottlenecks could be due to the application structure (e.g.,
serial fractions, critical sections) or due to contention for
shared architectural resources (e.g., cache, memory). Previ-
ous work has shown that many parallel applications can be

∗ Student author

12 4 8 12 16 20 24 28 32
Threads

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Figure 1. Performance of SP (Scalar Pentadiagonal) bench-
mark degrades with large number of cores

performance limited by available memory bandwidth [10].
For such applications, once memory bandwidth is saturated,
any additional threads spend their time waiting for memory
accesses rather than computing. These additional cores can
actually deteriorate performance due to queuing delays in
memory controllers.

In this paper, we perform a scalability analysis of parallel
applications on a 64-threaded Intel Nehalem-EX server. Our
evaluation platform consists of four eight-core Nehalem-
EX processors with 64GB DDR3 RAM. With the help of
hardware performance counters used for profiling, we show
that the performance of many performance limited appli-
cations is indeed limited by memory bandwidth. We verify
these bandwidth limitations by varying the number of mem-
ory riser cards used to plug memory in, and, thus varying
the available memory bandwidth. Experimental results show
that by increasing the memory bandwidth, applications ex-
hibit performance improvement of upto 53%.

Such memory bandwidth limited applications present two
opportunities for energy savings. First, by using dynamic
concurrency throttling (DCT) and second, by applying dy-
namic voltage and frequency scaling (DVFS). Our experi-
mental results show that memory bandwidth limited appli-
cations can save upto 59% energy using DCT and upto 17%
energy using DVFS.



2. Memory-intensity Analysis
In this section, we describe our methodology to analyze the
memory access behavior of parallel applications.

2.1 Measurement Method
For detecting memory bandwidth consumed by an applica-
tion, we use hardware performance counters. Specifically,
we use offcore response 0 counter 1 available on Intel Ne-
halem processor to count total memory accesses by a single-
threaded run of the application. This counter measures all
the requests that are serviced by the memory subsystem.

Why not LLC-misses?
Last level cache (LLC) misses are often used to measure
the memory intensity of an application. However, it does not
provide the correct measure of application’s memory band-
width requirement since it only counts on-demand read/write
requests which do not hit in the L3 cache. It does not mea-
sure the requests sent to the memory subsystem by hard-
ware prefetchers which also compete for memory band-
width. Therefore, use use offcore response 0 counter which
allows us to measure all the requests including prefetches
that go to memory.

2.2 Scalability Prediction
The behavior of memory bandwidth limited applications can
be modeled using Equation 1 [10]:

Tn =
T1

n′ where n′ =
BWtotal

BWthread
(1)

BWthread = offcore response 0 ∗ cache line size (2)

Here Tn represents application’s execution time with n
threads and n′ denotes the number of threads which sat-
urate memory bandwidth. n′ is calculated by diving total
available memory bandwidth BWtotal by bandwidth con-
sumed by a single thread BWthread. We obtain BWtotal

experimentally and BWthread by multiplying cache line
size with total number of memory requests measured using
performance counters as shown in Equation 2. Application
performance scales linearly until it saturates available band-
width (n′ threads). After this point, any increase in number
of threads does not result in performance gain. Therefore,
we use Equation 1 to predict the optimal number of threads
(n′) for execution.

To verify the applicability of Equation 1, we use a mul-
tithreaded microbenchmark where each thread sequentially
accesses (read or write) a large local array. Figure 2 shows
the modeled and measured performance of read and write
microbenchmarks as a function of number of threads. We
can see from the figure that Equation 1 captures the exper-
imental behavior closely. The difference between the mea-
sured and modeled values is due to queuing delays in mem-
ory controllers under high contention. We also note that read

1 We use any request and local dram masks with the counter.

12 4 8 16 24 32
Threads

10

20

30

40

50

60

70

80

90

100

No
rm

ali
ze

d 
Ex

ec
ut

ion
 T

im
e

Read (experimental)
Write (experimental)
Read (modeled)
Write (modeled)

Figure 2. Modeling performance of memory bandwidth
limited applications using hardware performance counters

and write benchmarks show significantly different behavior.
This is due to the fact each memory write operation causes
two memory accesses, first to fetch data into the cache and
then second, to write modified data back into memory during
write-back. This effectively doubles the bandwidth require-
ment.

3. Evaluation & Analysis
In this section, we present our experimental results for a
scalability analysis of real world parallel applications. Our
evaluation platform is a 64-threaded server consisting of
four eight-core Intel Nehalem-EX processors with 64GB of
DDR3 RAM (system architecture is shown in Figure 3 and
configuration details are provided in Table 1). Processors ac-
cess memory using a memory riser card interface which pro-
vides a read bandwidth of 10GBps. By varying the number
of riser cards used, we can vary the total amount of mem-
ory bandwidth available. All the energy results presented are
measured using Wattsup power meter. Our system has idle
power consumption of 484W. We use OpenMP implementa-
tion of NAS Parallel Benchmarks (NPB) [4] for our evalua-
tion. Input size for all the benchmarks except IS is class C.
For IS, we use class D since class C experiments run for a
very short period.

Processor Nehalem-EX
Cores 32

H/W threads 64
Cores per socket 8
CPU Frequency 2.26GHz

LLC size 24MB
Memory 64GB DDR3
DIMMs 8

Memory riser cards 1-4

Table 1. Configuration of the evaluation platform



C0 C1 C2 C3

C4 C5 C6 C7

IMC
R

is
e

r 
C

ar
d

IMCLLC

C0 C1 C2 C3

C4 C5 C6 C7

IMC IMCLLC

C0 C1 C2 C3

C4 C5 C6 C7

IMC IMCLLC

C0 C1 C2 C3

C4 C5 C6 C7

IMC IMCLLC

D
IM

M
s

R
is

er
 C

ar
d

D
IM

M
s

R
is

e
r 

C
ar

d

D
IM

M
s

R
is

e
r 

C
ar

d

D
IM

M
s

Figure 3. Architecture of our evaluation system

3.1 Performance Analysis
3.1.1 Single Riser Card
We first present results for the configuration when only one
memory riser card is used. We run each benchmark by vary-
ing the number of threads from zero to 32 in multiples of
four. Table 2 shows the number of threads for each appli-
cation which provides the maximum performance. The ta-
ble also contains results for the number of threads which
minimize energy consumption. As we can see, different ap-
plications show peak performance with different number of
threads. EP (embarrassingly parallel) benchmark scales well
to 32 threads, while MG and SP do not scale beyond 8 cores.
Figure 4 shows resultant scalability curves for each applica-
tion.

No. of Threads
Max. Min.

Performance Energy
BT 32 16
CG 12 12
EP 32 32
FT 20 16
IS 20 16
LU 24 16
MG 8 8
SP 8 8
UA 12 8

Table 2. Optimal number of threads for maximum perfor-
mance and minimum energy

We use Equation 1 and 2 to predict the optimal number of
threads (n′) for each application. Table 3 shows the predicted
number of threads along with memory bandwidth consumed
by each NPB application. The bandwidth is measured using

hardware performance counters as described in the previous
section. From a comparison of this predicted value with the
measured thread count (maximum performance column) in
Table 2, we observe that the prediction method provides
close results for all the other benchmarks except FT and IS.

Mem. B/W Predicted
(GBps) Threads (n′)

BT 0.23 42
CG 0.65 15
EP ∼0 64
FT 0.17 57
IS 0.31 31
LU 0.44 22
MG 1.2 8
SP 0.88 11
UA 0.76 13

Table 3. Memory bandwidth consumed by a single-
threaded run measured using performance counters and pre-
dicted optimal number of threads.

FT (fast fourier transform) and IS (integer sort) bench-
marks show poor scalability in experiments, while predic-
tion results show them to be highly scalable. This behavior
can be explained as follows: The model in Equation 1 as-
sumes that applications have a uniform memory access pat-
tern. However, this is not true for FT and IS which have
periodic peaks of memory accesses followed by durations
of low memory accesses. Only these peaks saturate mem-
ory bandwidth and are not scalable, while the other parts of
the computation are scalable. Therefore, a prediction that is
based upon average memory bandwidth consumption will
provide an incorrect prediction. For correct estimation, the
prediction method needs to take these phases into account
for applications with large differences in their memory ac-
cess frequency over time. We plan to explore this as part of
our future work.

3.1.2 Multiple Riser Cards
To further explore the impact of memory bandwidth on
these benchmarks, we distribute the memory in our system
across four riser cards and, thus, effectively quadruple the to-
tal memory bandwidth and perform the experiments again.
With two or three riser card configurations, our system be-
comes asymmetric in terms of mapping from quad-socket
CPU cores to two or three memory nodes. Therefore, we
only report results with four riser cards.

Figure 5 shows the resultant performance improvement
for this configuration. As we see from the figure, all the ap-
plications except EP show high performance improvement
with four riser cards. EP (embarrassingly parallel) does not
exercise memory subsystem and does not show any perfor-
mance improvement with four riser cards. Table ?? lists the



12 4 8 12 16 20 24 28 320.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) BT

12 4 8 12 16 20 24 28 320.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) CG

12 4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

(c) EP

12 4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

(d) IS

12 4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

(e) LU

12 4 8 12 16 20 24 28 320.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) MG

12 4 8 12 16 20 24 28 320.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(g) SP

12 4 8 12 16 20 24 28 320.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(h) UA

Figure 4. Scalability curve for NPB applications (x-axis = threads (1-32), y-axis = normalized performance (higher is better)).

BT CG EP FT IS LU MG SP UA
0

10

20

30

40

50

60

%
 P

er
fo

rm
an

ce
 G

ai
ns

Figure 5. Performance improvement due to increase in
memory bandwidth by using multiple memory riser cards.

corresponding optimal number of threads for maximum per-
formance with one and four riser cards. Many applications
show improved scalability upto 28-32 threads with four riser
cards. For example, Figure 6 shows a comparison of the
scalability behavior of FT with two configurations. With four
riser cards, FT performance scales to 28 threads which was
scalable to only 20 threads with one riser card.

4 8 12 16 20 24 28 32
Threads

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

(a) One riser card

4 8 12 16 20 24 28 32
Threads

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

(b) Four riser cards

Figure 6. Improved scalability in FT due to high memory
bandwidth (higher is better).

3.2 Energy Analysis
In this section, we discuss two opportunities to reduce the
energy consumption of memory bandwidth limited applica-
tions and show experimental results.

3.2.1 Concurrency Throttling
Parallel applications do not benefit from any additional
threads once memory bandwidth is saturated. However,
these additional threads add to the power consumption. By
regulating the number of threads used to run an application,
also known as dynamic concurrency throttling (DCT), its
power consumption can be reduced. Figure 7 shows energy
savings for all the NPB applications that can be achieved
by using optimal number of threads as compared to running
an application with as many threads as CPU cores. The re-
ported results correspond to the number of threads shown
for minimum energy in Table 2.

BT CG EP FT IS LU MG SP UA
0

10

20

30

40

50

60

%
 E

ne
rg

y 
Sa

vi
ng

s

One riser card

Four riser cards

Figure 7. Energy savings using concurrency throttling to
use fewer threads than cores available



3.2.2 Voltage and Frequency Scaling
An application limited by memory bandwidth spends most
of its time waiting for memory accesses. Therefore, dynamic
voltage and frequency scaling (DVFS) can be used to re-
duce application’s power consumption with minimal perfor-
mance degradation. Figure 8 shows corresponding energy
savings of DVFS, i.e., running all the cores at a frequency
of 1.06GHz. BT and IS show negative energy savings since
DVFS degrades their performance severely, resulting into
higher energy consumption. The figure also contains results
for a system configuration with idle power of 200W.

BT CG EP FT IS LU MG SP
�20

�15

�10

�50
5

10

15

20

25

%
 E

ne
rg

y 
Sa

vi
ng

s

System 1 (idle power = 484W)

System 2 (idle power = 200W)

Figure 8. Energy savings by applying DVFS to memory
bandwidth limited benchmarks (with 32 threads).

Since our system has high idle power (484W) due to re-
dundant fans, power supplies and other components, this idle
power component dominates the overall server power con-
sumption which makes energy saving techniques described
above less effective. A system with a lower idle power will
benefit more from these techniques. Also, the optimal op-
erating point (i.e., number of threads and CPU frequency)
for minimum energy consumption is dependent on this idle
power component. A lower idle power component will allow
aggressive idling and scaling techniques to be applied.

4. Related Work
Substantial previous work has analyzed the sources of poor
scalability in parallel applications. Several techniques have
been proposed to execute parallel applications with fewer
threads than cores to achieve maximum performance or min-
imum energy [3, 5, 9, 10]. Previous work has also proposed
models to predict the optimum number of threads for an ap-
plication [2, 7]. However, previous work has either relied
on simulators or systems with smaller core count (upto 12)
for their evaluation. In comparison, our experimental results
are based on a large 64-threaded Intel Nehalem-EX server.
Further, studies have been performed to analyze the memory
intensity of parallel applications highlighting the bottlenecks
in memory subsystem [6, 8]. Our results support their con-
clusions stressing the importance of regulating the number
of threads used for parallel applications.

5. Conclusions & Future Work
In this paper, we performed a scalability analysis of paral-
lel applications on a 64-threaded Intel Nehalem-EX based
server. Using hardware performance counters to detect mem-
ory subsystem bottlenecks, we showed that many perfor-
mance limited applications are limited by memory band-
width. When provisioned with higher memory bandwidth by
increasing the number of riser cards, applications show bet-
ter scalability and performance improvements of upto 53%.
We also discussed two opportunities to reduce the energy
consumption of memory bandwidth limited application. By
regulating the number of threads for execution, upto 59% en-
ergy savings and by applying dynamic voltage and frequency
scaling upto 17% energy savings can be achieved.

As part of future work, we plan to extend our scalability
analysis to other class of applications which may have bot-
tlenecks due to shared resources like caches. We would also
like to develop models to predict the performance of appli-
cation performance in these scenarios.

References
[1] S. Borkar. Thousand core chips: a technology perspective. In

Proceedings of the 44th annual Design Automation Confer-
ence, DAC ’07, New York, NY, USA, 2007. ACM.

[2] M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos,
B. R. de Supinski, and M. Schulz. Prediction models for
multi-dimensional power-performance optimization on many
cores. In Proceedings of the 17th ACM PACT ’08, 2008.

[3] S. Imamura, H. Sasaki, N. Fukumoto, K. Inoue, and K. Mu-
rakami. Optimizing power-performance trade-off for parallel
applications through dynamic core and frequency scaling. In
Proceedings of the RESoLVE’12, March 2012.

[4] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation
of NAS parallel benchmarks and its performance. NASA Ames
Research Center,” Technical Report NAS-99-011, 1999.

[5] J. Li and J. Martinez. Dynamic power-performance adaptation
of parallel computation on chip multiprocessors. In proceed-
ings of the IEEE 12th HPCA, pages 77 – 87, feb. 2006.

[6] L. Liu, Z. Li, and A. H. Sameh. Analyzing memory access
intensity in parallel programs on multicore. In Proceedings of
the 22nd ICS ’08, New York, NY, USA, 2008. ACM.

[7] R. Moore and B. Childers. Using utility prediction models to
dynamically choose program thread counts. In Proceedings of
the IEEE ISPASS, pages 135 –144, april 2012.

[8] M. Pavlovic, Y. Etsion, and A. Ramirez. On the memory
system requirements of future scientific applications: Four
case-studies. In Proceedings of the IEEE IISWC, nov. 2011.

[9] K. Pusukuri, R. Gupta, and L. Bhuyan. Thread reinforcer:
Dynamically determining number of threads via os level mon-
itoring. In Proceedings of the IEEE IISWC ’11, nov. 2011.

[10] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-
driven threading: power-efficient and high-performance exe-
cution of multi-threaded workloads on CMPs. In Proceedings
of the ASPLOS XIII, New York, NY, USA, 2008. ACM.


